

DAISY: Diagnostic Al System for Robot-Assisted A&E Triage

Dr Ol'Tunde Ashaolu¹, Professor Radu Calinescu², and Dr Ioannis Stefanakos²

¹ York and Scarborough Teaching Hospitals, NHS Foundation Trust / Hull-York Medical School

TAS Showcase

5th – 6th March 2024

² Department of Computer Science, University of York

Researchers interacting with DAISY at the University of York's Institute for Safe Autonomy

Research Team

Dr Ol'Tunde Ashaolu, York and Scarborough Teaching Hospitals NHS Foundation, Project Co-lead

Professor Radu Calinescu, Computer Science, University of York, Principal Investigator/Project Co-lead

Professor Ibrahim Habli, Computer Science, University of York, Co-investigator

Dr Victoria Hodge, Computer Science, University of York, Senior Research Fellow

Billy Lyons, Computer Science, University of York, Research Associate

Dr Chiara Picardi, Computer Science, University of York, Research Associate and Co-investigator

Dr Katie Plant, Faculty of Engineering and Environment, University of Southampton, Co-investigator

Georgia Sowerby, Computer Science, University of York, Research Student

Dr Ioannis Stefanakos, Computer Science, University of York, Research Associate

Dr Bev Townsend, Computer Science/York Law School, University of York, Research Associate and Co-investigator

Motivation

- NHS England has a shortage of medical staff and an aging workforce 1
- Increased stress is leading to sickness absences ¹
- **Distribution** of doctors is not uniform ¹
- Healthcare worker shortages are experienced everywhere
 - o shortfall of 124,000 physicians by 2034 in the United States ²
 - o shortage of 1 million healthcare workers in the EU ³

¹BMA - https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/workforce/nhs-medical-staffing-data-analysis

²AAMC Report - https://www.aamc.org/news-insights/press-releases/aamc-report-reinforces-mounting-physician-shortage

³WHO - https://www.who.int/europe/news/item/22-03-2023-the-health-workforce-crisis-in-europe-is-no-longer-a-looming-threat---it-is-here-and-now.-the-bucharest-declaration-charts-a-way-forward

An Increasing Challenge...

- It takes years to train a clinician
- Yearly intakes are lower than estimated needs
- Alternatives must be explored

Clinicians: What & How?

1. **Teams** to manage **Workload**

2. Individuals to drive Processes

3. Neurons to make Decisions

Workload

The Team

The Ideal

Data Gathering and TEAM Clinical Decision Making...

TAS Showcase 2024 www.tas.ac.uk

The Deficit

Our Solution

Processes

The Individual

The Hospital Triage Process

Collection of **Subjective** data

Location: Reception

Personnel: Admin Staff

Outcome: Zeroth Triage

Collection of **Subjective** data

Location: Triage Room

Personnel: Triage clinician

Outcome: Primary Triage

Collection of **Objective** data

Location: Triage Room

Personnel: Triage clinician

Outcome:
Secondary Triage

Interpretation and Analysis

Location: Triage Room

Personnel: Triage Clinician

Outcome:
Interventions &
Investigations

Examination and **Assessment**

Location: Clinician Room

Personnel: Treating Clinician

Outcome: Treatment Plan

PAGE 11

The Hospital Triage Process

Decision

The Neurons

dAvInci_(Diagnostic Algorithm for Intelligent Clinical Intervention)

Demographic

Anatomical

Subjective

Objective

'Al System' Supports 'Whole System'

1. Teams to manage Workload

2. Individuals to drive Processes

3. Neurons to make Decisions

Refined Triage Pathway

Diagnostic Al System (DAISY)

Technical Solution

Assessment Rule Example

Consider the following example for the detection of Meningitis:


```
\begin{aligned} dem(\text{meningitis}, D) &= \text{true} \\ anat(\text{meningitis}, A) &= \text{head} \vee \text{neck} \\ subj(\text{meningitis}, S) &= (\text{headache} \wedge \text{vomiting}) \vee \text{rash} \\ & \vee \text{photophobia} \\ obj(\text{meningitis}, O) &= (T > 37.9 \vee T < 36) \wedge PR > 90 \\ & \vee (T > 37.9 \vee T < 36) \wedge RR > 20 \\ & \vee (PR > 90 \wedge RR > 20) \end{aligned}
```


DAISY Solution Abstracted

Demonstration

Evaluation

1. Medical practitioners' survey

2. Patient and Public Involvement exercise @ York Hospital

3. UK-wide online public study

Are you an adult over 18 with experience in UK A&E services?

We cordially invite you to participate in our groundbreaking research study to help shape the future of emergency room care.

Are Long Waiting Times a Concern?

The number of patients waiting over 12 hours in corridor trolley beds for A&E admission is at a record high. The extended waiting times not

How to access the study:

4. Testing of technical solution (next slides)

Preliminary Evaluation: solution testing

- Correctness evaluation
 - Synthetic dataset comprising 6237 patient entries for testing the triage capabilities of our solution
 - 81.74% of the generated reports confirmed as producing correct assessments (16995 out of 20790)
- Issues identified:
 - Multiple terms for similar/same illness
 - Incomplete ruleset and ranking system

Example of multiple terms:

Pneumonia (Community Acquired)

Respiratory Tract Infection

Chest Infection

Lower Respiratory Tract Infection

@tas hub

Preliminary Evaluation: solution testing

- Usability evaluation
 - Invited 12 participants with technical background to use a prototype of the system
 - Used their feedback to improve solution
- Need to invite more users in our usability evaluation from more diverse backgrounds

DAISY USABILITY EVALUATION QUESTIONS, WHERE 1.STRONGLY DISAGREE, 2.DISAGREE, 3.NEUTRAL, 4.AGREE, 5.STRONGLY AGREE.

Question	Average Score
Evaluating step 1: Inputting information	
I found the DAISY system easy to use	4
I would probably need the support of a	2
technical person to use this DAISY system part	2
I felt confident using the DAISY system	3.67
I thought there was too much inconsistency in	1.92
the DAISY system	1.92
I felt frustrated using the DAISY system	2.17
I felt satisfied using the DAISY system	4
I felt the mental demand for this activity was	3.75
reasonable and manageable	3.73
Evaluating step 2: Medical equipment	
I found the medical equipment easy to use	3.33
I would probably need the support of a	3.42
technical person to use the medical equipment	3.42
I felt confident using the medical equipment	3.33
I thought there was too much inconsistency in	2.08
the medical equipment	2.00
I felt frustrated using the medical equipment	2.08
I felt satisfied using the medical equipment	3.5
I felt the mental demand for this activity was	3.67
reasonable and manageable	5.07
I felt the physical demand for this activity was	3.83
reasonable and manageable	5.65
Thinking about the system overall and its or	ıtput
I feel suspicious of the DAISY system	2
I am confident in the DAISY system	3.25
The DAISY system has high integrity	3.5
I can trust the DAISY system	3.42
The DAISY system provides security	3.8
The DAISY system is reliable	3

Next Steps

- Feasibility clinical trial at Scarborough Hospital
- Setup of recently acquired ARI robot¹
- Hybrid-Al extension
 - Bayesian reasoning for domain knowledge
 - Machine learning for non-verbal cues
 - cough, jaundice, etc.

¹PAL Robotics - ARI social robot https://pal-robotics.com/robots/ari/

DAISY in the media

Dr Ioannis Stefanakos of the University of York has his blood pressure checked by DAISY, an Al-equipped robot designed to provide triage and assistance in A&E

Publications

Beverley A. Townsend, Katherine L. Plant, Victoria J. Hodge, Ol'Tunde Ashaolu, and Radu Calinescu. Medical practitioner perspectives on AI in emergency triage. *Frontiers in Digital Health* **5**:1297073, 2023.

Ol'Tunde Ashaolu, William Lyons, Ioannis Stefanakos, Radu Calinescu, Ibrahim Habli, Victoria Hodge, Chiara Picardi, Katherine Plant, Beverley Townsend. "Autonomous Emergency Triage Support System". 10th Intl. Conf. Computational Science & Computational Intelligence, 2023.

Visit our DAISY demo at the Showcase – booth 16