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Autonomous navigation is a fundamental problem of mobile robots, which
aims to o identify an optimal or suboptimal path from a starting point to a
target point in a Two-Dimensional (2D) or Three-Dimensional (3D)
environment while avoiding obstacles.

* Let the agent learn how to learn new tasks faster by reusing
previous experience.

* |nvolve two learning loops of training:
o Qut loop learns common knowledge (represented by a neural

Collision Sensing Range Suddenly appeared vehicle network 8) from many tasks.
\ o Innerloop learns policies based on the learned model 6.
. . Main differences from reinforcement learning:
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Simulation Framework

leur“'“g'Bused Nuwguhon Methods: State-of-the-art Programmable Engine for Drone Reinforcement Learning Applications

(PEDRA) [1] is utilized as simulation environment.

* Pros:
* They can provide scalable
solutions for large operation
environments.
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* Model generalizability across heterogeneous vehicles
* Fast adaptation to dynamic environments (Short training time for

Ongoing and Future Works

new environments) * Implementation of the proposed algorithm will be completed.
* Lifelong learning ability * Adaptability and transferability will be evaluated in indoor and
* Flight/operation safety during learning process outdoor maps.
* The proposed application will be extended for the urban airspace
scenarios.
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