	communityr	of UK reseof	global resge	of UK res	frequent words in titles
15	15	163	194	84	research integrity research integrity world proc
32	32	93	113	82.3	algorithmic data accountability human decisio
7	7	182	261	69.7	robot autonomous robots verification human s
13	13	121	226	53.5	autonomous control vehicles based vehicle aut
12	12	97	231	42	robot soft based control robots model robotic
8	8	95	259	36.7	uav networks based allocation resource wireles
22	22	48	149	32.2	robot control based robots robotic locomotion
11	11	61	246	24.8	based networks uav data trust multi learning m
28	28	21	120	17.5	based design systems mobile control robot data
0	0	99	629	15.7	control based robot multi systems adaptive rot
5	5	41	282	14.5	robot control based planning learning humano
29	29	17	117	14.5	based social trust algorithm networks search sv
9	9	37	258	14.3	robot autonomous control multi based plannir
23	23	20	143	14	based energy smart robot system data control r
10	10	34	249	13.7	control based robot multi robotic cooperative
14	14	28	216	13	2017 global countries burden global burden 19
3	3	34	300	11.3	learning robot based robotic deep human cont
16	16	19	193	9.8	control multi based systems robot agent multi
25	25	11	133		networks based uav multi power trajectory mo
6	6	18	272	6.6	control multi systems agent multi agent agent s
20	20	10	160		control systems multi agent multi agent agent s
4	4	18	298	6	control robot based robots multi autonomous
17	17	9	177		trust human agent robot control automation t
27	27	6	124		diabetes control loop closed closed loop type t
2	2	14	325		robot control based planning autonomous veh
18	18	7	169		based planning aerial control learning robots a
1	1	12	391		control autonomous learning based robot plan
24	24	4	142		robot based control robots mobile quadruped
30	30	3	115		based networks trust system iot optimization s
19	19	4	164		robot control based humanoid design research
21	21	2	154		control robot based multi robots tracking resea
31	31	1	114		agent multi systems multi agent control agent s
26	26	1	129	0.8	trust autonomous driving human control auto

:eedings 4th conference proceedings 4th 4th world world conference n making decision making internet model things systems vehicles based robotic trust onomous vehicles driving path tracking automated simulation arm autonomous is power enabled systems resource allocation n humanoid time walking design odel blockchain communication a computing trust dynamic pots time aerial robotic id robots robotic multi motion varm system network data ng driving systems robots multi robot nanagement optimization multi tracking planning aerial vehicles 35 territories 195 countries countries territories 2015 rol multi planning real agent planning agent systems distributed bile allocation computing data systems consensus based time distributed systems based adaptive consensus nonlinear mobile planning vehicles adaptive ransparency autonomous systems based ype diabetes glucose artificial pancreas icles multi aerial robots unmanned utonomous robot path environments ning vehicles multi systems autonomous vehicles gait design robot based algorithm ystems vehicles service management planning university waseda waseda university arch underwater design vehicles systems time formation varying time varying nomous driving based systems automation teaming

	community	ness Marke	HCI	Law	Iental Healt	ti Agent Sys	tion \& Validation
0	0	4	94	4	1	2	1257
1	1	62	108	9	0	0	584
2	2	24	44	5	0	3	618
3	3	9	99	1	0	5	399
4	4	19	54	2	0	0	534
5	5	1	129	8	0	1	418
6	6	4	37	0	0	1	583
7	7	10	118	5	2	4	336
8	8	9	192	3	1	1	254
9	9	27	88	3	0	0	365
10	10	20	57	4	0	0	380
11	11	6	238	1	7	6	178
12	12	7	57	2	0	1	305
13	13	73	61	11	0	3	261
14	14	0	39	1	1	0	0
15	15	0	87	27	18	0	0
16	16	14	48	0	0	2	411
17	17	10	166	2	3	18	87
18	18	6	19	0	1	0	303
19	19	1	9	0	0	0	264
20	20	3	43	2	0	1	306
21	21	7	18	0	0	1	321
22	22	0	22	3	0	0	254
23	23	2	77	1	1	1	181
24	24	6	12	0	0	0	260
25	25	4	112	0	1	3	122
26	26	18	54	2	0	5	113
27	27	0	90	0	1	1	20
28	28	2	93	1	1	2	118
29	29	2	103	1	0	0	112
30	30	5	122	1	5	0	82
31	31	2	25	0	1	1	248
32	32	4	120	40	2	3	39

	communityhe	matical Sh	and Comp	Engineeri) Technoloal	and Healt	y and C	Cognitive Science
0	1	73	621	99			-	
1	2	32	555	155			-	
2	18	13	278	60			-	
3	19	8	211	70			-	
4	21	15	275	82			-	
5	24 -		212	70	12 -		-	
6	26 -		118	24				28
7	27 -		29	25	-	65	-	
8	30 -		187	-	20 -			19
9	31	34	197	80			-	

0 1 451 Hyref(https Reluplex: An Efficient SMT Solver for Verifying Deep Neural I 2 1 174 Hyref(https SqueezeSeg: Convolutional Neural Nets with Recurrent CRF 3 1 161 Hyref(https SoPeir: An Attentive GAN Attentive GAN Attentive GAN Attentive GAN Attentive GAN Attentive GAN attentive CAN for Predicting Paths Compliant to 4 1 1147 Hyref(https SoPeir: An Attentive GAN Attentive GAN Paths Compliant to 5 1 139 Vhref(https Design of Attentive GAN Attentive GAN Paths Compliant to 6 1 117 Hyref(https Daynamics and trajectory optimization for a soft spatial fluir 100 108 Hyref(https End-to-End Driving Via Conditional Imitation Learning 11 2 189 Hyref(https End-to-End Driving Via Conditional Imitation Learning 11 2 112 112 112 11 2 112 112 112 12 112 112 112 112 112 13 112 114 100 Hyref(https Gan and Trajectory Optimization for Legged Systems Throu 13 112 114 <t< th=""><th></th><th>communityber</th><th>ofcitat</th><th>imensions i title</th></t<>		communityber	ofcitat	imensions i title
2 1 174 \href[https SqueezeSeg: Convolutional Neural Nets with Recurrent CRF 3 1 161 \href[https SoPhie: An Attentive GAN for Predicting Paths Compliant tit 5 1 139 \href[https WaterGAN: Unsupervised Generative Network to Enable Re 6 117 \href[https Secure State Estimation for Cyber-Physical Systems Under S 7 1 108 \href[https Losign of a Momentum-Based Control F ramework and Appl 8 1 100 \href[https Losign of a Momentum-Based Control F spatial flut 9 198 \href[https Losidn of a Momentum-Based Control F spatial flut 10 2 152 \href[https Learning agile and dynamic motor skills for legged robots 13 2 112 \href[https Self-Organization as a Supporting Paradigm for Military UA/ 14 2 100 \href[https Self-Organization as a Supporting Paradigm for Military UA/ 14 2 100 \href[https Self-Organization of Wireless Sensor Network and UAV Data Acc 15 2 8 \href[https Self-Organization of Wireless Sensor Network and UAV Data Acc 16 2 83 \href[https Self-Organization of Wireless Sensor Network and UAV Data Acc 17 2 83 \href[https Self-Organization of Wireless Sensor Network and UAV Data Acc 20 74 \href[https Self-Organization to Sels	0	1	451	https: Target-Driven Visual Navigation in Indoor Scenes Using Dee
3 1 161 \href[https Team IHMC's Lessons Learned from the DARPA Robotics Ch; 4 1 147 \href[https Secure State Estimation of Predicting Paths Compliant It 5 1 139 \href[https Secure State Estimation for Cyber-Physical Systems Under S 7 108 \href[https Lacaring-Based Framework for Velocity Control In Autonc 9 19 Nref[https Lacaring-Based Framework for Velocity Control In Autonc 9 19 Nref[https Secure State Estimation for a soft spatial fluit 10 2 189 \href[https Lacaring-Based Framework for Velocity Control In Autonc 9 19 Nref[https Self-Organization as a Supporting Paradigm for Military UA 112 152 \href[https Self-Organization as a Supporting Paradigm for Military UA 13 2 112 \href[https Self-Organization as a Supporting Paradigm for Military UA 14 2 100 \href[https Gilson Env: Real-World Perception for Law Otdance 15 2 84 \href[https Giltariation of Wireless Sensor Network and UAV Data Acc 17 2 83 \href[https Frein Paradigm for Jakking Agents 20 7 href[https Structural Inspection Path Planning via Lerative Viewopint 18 27 href[h	1	1	288	https: Reluplex: An Efficient SMT Solver for Verifying Deep Neural
4 1 147 \href[https SoPhie: An Attentive GAN for Predicting Paths Compliant tr 5 1 139 \href[https Secure State Estimation for Cyber-Physical Systems Under S 7 1 108 \href[https Design of a Momentum-Based Control Framework and Appl 8 1 100 \href[https Design of a Momentum-Based Control Framework and Appl 8 1 100 \href[https Damains and trajectory optimization for a soft spatial fluir 10 2 189 \href[https End-to-End Driving Via Conditional Imitation I naturoin 11 2 168 \href[https End-to-End Driving Via Conditional Imitation I Legred robots 13 2 112 \href[https Self-Organization as a Supporting Paradigm for Military UAV 14 2 100 \href[https Self-Organization as a Supporting Paradigm for Military UAV 14 2 100 \href[https Gamon Env: Real-World Perception for Embodied Agents 16 2 83 \href[https Internet of Vehicles: From intelligent grid to autonomous c 17 2 8 \href[https Optimization of Wireless Sensor Network and UAV Data Acc 20 2 7 \href[https Fifthtps Prediction Path Planning via transitical mode 21 18 32 \href[https Shott avigation in dense human crowds: Statma diseli 22 18 <	2	1	174	https: SqueezeSeg: Convolutional Neural Nets with Recurrent CRF
5 1 139 \href[https WaterGAN: Unsupervised Generative Network to Enable Re 6 117 \href[https Design of Momentum-Based Control Framework and Appl 7 1 100 \href[https A Learning-Based Framework for Velocity Control in Autonr 9 1 98 \href[https Endt-ocnd Driving Via Conditional Imitation Ispatial fluit 10 189 \href[https Sensor Planning for a Symbiotic UAV and UGV System for Pr 12 152 \href[https Sensor Planning for a Symbiotic UAV and UGV System for Pr 13 112 \href[https Sensor Planning for a Symbiotic UAV and UGV System for Pr 14 100 \href[https Senf-Organization as a Supporting Paradigm for Military UAV 14 100 \href[https Senf-Organization as a Supporting Paradigm for Military UAV 14 100 \href[https Senf-Organization as a Supporting Paradigm for Military UAV 14 100 \href[https Senf-Organization as a Supporting Paradigm for Military UAV 14 100 \href[https Gait and Trajectory Optimization for Legged Systems Throu 18 2 7 <hhref[https acc<="" and="" data="" network="" of="" optimization="" sensor="" td="" uav="" wireless=""> 20 7<hhref[https "next-best-view"="" 3d="" explori<="" for="" horizon="" planner="" receding="" td=""> 21 18 37<hhref[https "next-best-view"="" 3d="" explori<="" for="" horizon="" planner="" receding="" td=""> 22 18 132<hhref[https< th=""><th>3</th><th>1</th><th>161</th><th>https: Team IHMC's Lessons Learned from the DARPA Robotics Cha</th></hhref[https<></hhref[https></hhref[https></hhref[https>	3	1	161	https: Team IHMC's Lessons Learned from the DARPA Robotics Cha
6 1 117 \href(https Secure State Estimation for Cyber-Physical Systems Under S 7 1 108 \href(https Learing-Based Framework for Velocity Control in Auton 9 1 98 \href(https Learing-Based Framework for Velocity Control in Auton 9 1 98 \href(https End-to-End Driving Via Conditional Imitation Learning 11 2 168 \href(https Secore Planning for a Symbiotic LOV and UGV System for Pr 12 2 152 \href(https Self-Organization as a Supporting Paradigm for Military UAV 14 2 100 \href(https Sampling-Based Path Planning for UAV Collisor woldance 15 2 84 \href(https Gibson Env: Real-World Perception for Embodied Agents 16 2 7 \href(https Optimization of Wireless Sensor Network and UAV Data Acc 17 2 83 \href(https Citization of Wireless Sensor Network and UAV Data Acc 20 2 7 \href(https Receding Horizon 'Next-Best-View' Planning roit Statistical mode 21 18 378 \href(https Receding Horizon 'Next-Best-View' Planning roit statistical mode 22 18 132 \href(https Robot navigation in dense human crowds: Statistical mode 22 2 7 \href(https Robot navigation in dense human crowds: Statistical mode 23 118	4	1	147	https: SoPhie: An Attentive GAN for Predicting Paths Compliant to
71108https Design of a Momentum-Based Control Framework and Appl81100\href{https Damics and trajectory optimization for a soft spatial fluic9\href{https Damics and trajectory optimization for a soft spatial fluic102189\href{https Sensor Planning for a Symbiotic UAV and UGV System for Pr12152\href{https Sensor Planning for a Symbiotic UAV and UGV System for Pr132112\href{https Sensor Planning for a Symbiotic UAV and UGV System for Pr142100\href{https Sampling-Based Path Planning for UAV Collision Avoidance15284\href{https Gibtan Env: Real-World Perception for Embodied Agents16281\href{https Gibtan Env: Real-World Perception for Lawo Mullar VAV Data Acc17283\href{https Optimization of Wireless Sensor Network and UAV Data Acc2027\href{https Optimization of Wireless Sensor Network and UAV Data Acc2118378\href{https Richtps Reception to Decision: A Data-Driven Approach to Er2318132\href{https Structural Inspection Path Planning via Iterative Viewpoint to Er2418193\href{https Structural Inspection Path Planning via iterative Viewpoint to Er2518103\href{https Navigation Planning for Jegged Robots in Challenging Terra3030161781892518103\href{https Structural Inspection Path Planning via iterative Viewpoint to Er2618193\href{https Structur	5	1	139	https: WaterGAN: Unsupervised Generative Network to Enable Re
8 1 100 https A Learning-Based Framework for Velocity Control in Autonc 9 1 98 \href{https Dynamics and trajectory optimization for a soft spatial fluit 100 2 189 \href{https End-to-End Driving Via Conditional Imitation Learning 11 2 168 \href{https Sensor Planning for a Symbiotic UAV and UGV System for Pr 12 2 152 \href{https Sensor Planning for a Symbiotic UAV and UGV System for Pr 13 2 112 \href{https Self-Organization as a Supporting Paradigm for Military UAI 14 2 100 \href{https Simpling-Based Path Planning for UAV Collision Avoidance 15 2 84 \href{https Gibson Env: Real-World Perception for Embodied Agents 16 2 83 \href{https Optimization of Wireless Sensor Network and UAV Data Accc 19 21 77 \href{https Optimization of Wireless Sensor Network and UAV Data Accc 20 2 74 \href{https Receding Horizon "Next-Best-View" Planning via Iterative Viewpoint 1 21 18 378 \href{https Robot navigation in dense human crowds: Statistical mode 22 18 132 \href{https Notion Planning for Legged Robots in Challenging Tera 23 19 \href{https Navigation Planning for Legged Robots in Challenging Tera 24 <t< th=""><th>6</th><th>1</th><th>117</th><th>https: Secure State Estimation for Cyber-Physical Systems Under S</th></t<>	6	1	117	https: Secure State Estimation for Cyber-Physical Systems Under S
9198Nref[httpsEnd-to-End Driving Via Conditional Imitation Learning102189\nref[httpsEnd-to-End Driving Via Conditional Imitation Learning112168\nref[httpsSensor Planning for a Symbiotic UAV and UGV System for Pr122152\nref[httpsSelf-Organization as a Supporting Paradigm for Military UAV142100\nref[httpsSelf-Organization as a Supporting Paradigm for Military UAV142100\nref[httpsSelf-Organization as a Supporting Paradigm for Military UAV16283\nref[httpsSelf-Organization for Embodied Agents17283\nref[httpsNoref[httpsNoref[https18277\nref[httpsOptimization of Wireless Sensor Network and UAV Data Acc2074\nref[httpsNoref[httpsNoref2118378\nref[httpsNorefNoref2218132\nref[httpsNorefNoref2318132\nref[httpsNorefNoref2418113\nref[httpsNorefNoref2518102\nref[httpsNorefNoref2618102\nref[httpsNorefNoref271879\nref[httpsNorefNoref2816\nref[httpsNorefNorefNoref2916\nref[httpsNorefNorefNoref311910 </th <th>7</th> <th>1</th> <th>108</th> <th>https: Design of a Momentum-Based Control Framework and Appl</th>	7	1	108	https: Design of a Momentum-Based Control Framework and Appl
102189 \href(https End-to-End Driving Via Conditional Imitation Learning112168 \href(https Sensor Planning for a Symbiotic UAV and UGV System for Pr12152 \href(https Learning agile and dynamic motor skills for legged robots132112 \href(https Sel-Organization as a Supporting Paradigm for Military UA)142100 \href(https Sison Env: Real-World Perception for Embodied Agents16284 \href(https Gait and Trajectory Optimization for Legged Systems Throu.18277 \href(https Optimization of Wireless Sensor Network and UAV Data Acc192177 \href(https Optimization of Wireless Sensor Network and UAV Data Acc20274 \href(https Distimation of Wireless Sensor Network and UAV Data Acc2118378 \href(https Form Perception to Decision: A Data-Driven Approach to Er2318132 \href(https From Perception to Decision: A Data-Driven Approach to Er24133 \href(https Robot navigation in dense human crowds: Statistical mode2518102 \href(https Receding horizon maning for Jounds: Statistical mode2618102 \href(https Receding horizon path planning via viewpoint tr2816\href(https Receding horizon path planning for Jounds: Statistical mode2910\href(https Receding horizon path planning for Jounds: Statistical mode301819103119103419343519403619343719343819<	8	1	100	https: A Learning-Based Framework for Velocity Control in Autonc
112168href(httpsSensor Planning for a Symbiotic UAV and UGV System for Pr12152\href(httpsLearning agile and dynamic motor skills for legged robots13111\href(httpsSampling-Based Path Planning for UAV Collision Avoidance16283\href(httpsSimpling-Based Path Planning for UAV Collision Avoidance16283\href(httpsGittpsInternet of Vehicles: From intelligent grid to autonomous c17283\href(httpsGittpsGittpsGittps18277\href(httpsOptimization of WirelessSensor Network and UAV Data Acc20274\href(httpsOptimization of WirelessSensor Network and UAV Data Acc2118378\href(httpsNorePreption to Decision: A Data-Driven Approach to Er2318312\href(httpsFrom Perception to Decision: A Data-Driven Approach to Er2418132\href(httpsStotarural Inspection Path Planning via Iterative Viewpoint2518102\href(httpsNoregee control for concave areas by a heterog26102\href(httpsNavigation Planning for JD explora:271879\href(httpsShoton Planning for JD explora:28102\href(httpsNoregee control for concave areas by a heterog30103\href(httpsNavigation Planning for JD exploration and sur291860\href(httpsShade Planning Rotorol for Second-Order Multi- <th>9</th> <th>1</th> <th>98</th> <th>https: Dynamics and trajectory optimization for a soft spatial fluic</th>	9	1	98	https: Dynamics and trajectory optimization for a soft spatial fluic
122152 https Self-Organization as a Supporting Paradigm for Military UA142100 \href{https Sampling-Based Path Planning for UAV Collision Avoidance15284 \href{https Gibson Env: Real-World Perception for Embodied Agents16283 \href{https Git and Trajectory Optimization of Legged Systems Throu18277 \href{https Optimization of Wireless Sensor Network and UAV Data Acc192177 \href{https Optimization of Wireless Sensor Network and UAV Data Acc20274 \href{https Do Estimation of Wireless Sensor Network and UAV Data Acc2118378 \href{https Netexition of Wireless Sensor Network and UAV Data Acc2218132 \href{https From Perception to Decision: A Data-Driven Approach to Er23183132 \href{https Structural Inspection Path Planning via Iterative Viewpoint24113\href{https Receding Horizon "Next-Best-View" Planner for 3D Explore24113\href{https Structural Inspection Path Planning via viewpoint te2518102 \href{https Three-dimensional coverage path planning via viewpoint te271869 \href{https Shage Saning Techniques for Continuum Robots in Minim3018\href{https Sitsibuted coverage control for Second-Order Multi-311910\href{https Find Paradig Control for Second-Order Multi-331940\href{https Find Paradig Control for Second-Order Multi-341949\href{https Find Paradig Control for Second-Order Multi-351940\href{https Find Paradig Co	10	2	189	https: End-to-End Driving Via Conditional Imitation Learning
132112 https Self-Organization as a Supporting Paradigm for Military UA142100 \href{https Sampling-Based Path Planning for UAV Collision Avoidance15284 \href{https Gibson Env: Real-World Perception for Embodied Agents16283 \href{https Internet of Vehicles: From intelligent grid to autonomous c17283 \href{https Optimization of Wireless Sensor Network and UAV Data Acc192177 \href{https Optimization of Wireless Sensor Network and UAV Data Acc20274 \href{https On Estimation of Wold Velocity, Angle-of-Attack and Sidesli2118378 \href{https From Perception to Decision: A Data-Driven Approach to Er2318132 \href{https From Perception to Decision: A Data-Driven Approach to Er2418113 \href{https Structural Inspection Path Planning via Iterative Viewpoint2518102 \href{https Receding horizon path planning via viewpoint re2816\href{https Navigation Planning For 3D exploration and sur291860 \href{https Navigation Planning for Occave areas by a heteroj301319110 \href{https Shap Sensing Techniques for Continuum Robots in Minimi311910\href{https Fall Detection and Prevention Control Using Walking-Aid C33341960 \href{https Fall Detection and Prevention Control Using Walking-Aid C341933110 \href{https Shap Sensing Techniques for Continuum Robots in Minimi321930 \href{https Intersection of Tosku" Special Zone, Robots, and the Law:44 <t< th=""><th>11</th><th>2</th><th>168</th><th>https: Sensor Planning for a Symbiotic UAV and UGV System for Pr</th></t<>	11	2	168	https: Sensor Planning for a Symbiotic UAV and UGV System for Pr
142100 https Sampling-Based Path Planning for UAV Collision Avoidance15284 \href{https Gibson Env: Real-World Perception for Embodied Agents16283 \href{https Gait and Trajectory Optimization for Legged Systems Throu18277 \href{https Gait and Trajectory Optimization for Legged Systems Throu18277 \href{https Optimization of Wireless Sensor Network and UAV Data Acc192177 \href{https On Estimation of Wineless Sensor Network and UAV Data Acc20274 \href{https Netsim: High-Fidelity Visual and Physical Simulation for Aut2218133 \href{https From Perception to Decision: A Data-Driven Approach to Et2418113 \href{https Robot navigation in dense human crowds: Statistical mode2518102 \href{https Robot navigation in dense human crowds: Statistical mode2618102 \href{https Navigation Planning for JD exploration and sur271910 \href{https Navigation Planning for Gonzeva eras by a heterog301858 \href{https Savigation Planning for Legged Robots in Challenging Terra30305319311910 \href{https Savigation Planning Robot with Bio-Inspired Spine M351940 \href{https FalD bettion and Prevention Control Using Walking-Aid C37341934 \href{https FalD bettion and Prevention Control Using Walking-Aid C381930 \href{https Savigation Planning for Legged Robots in Challenging Terra30351940 \href{https Savigation Planning for Legged Robots in Challe	12	2	152	https: Learning agile and dynamic motor skills for legged robots
15284\href(httpsGibson Env: Real-World Perception for Embodied Agents16283\href(httpsInternet of Vehicles: From intelligent grid to autonomous c17283\href(httpsOptimization of Wireless Sensor Network and UAV Data Acc192177\href(httpsOptimization of Wireless Sensor Network and UAV Data Acc20274\href(httpsOptimization of Wireless Sensor Network and UAV Data Acc2118378\href(httpsOn Estimation of Wireless Sensor Network and UAV Data Acc2218378\href(httpsReceding Horizon "Next-Best-View" Planner for 3D Explora2318378\href(httpsReceding Horizon "Next-Best-View" Planner for 3D Explora24113\href(httpsReceding Horizon "Next-Best-View" Planner for 3D Explora2518102\href(httpsRote ananing and repetition Planning via viewpoint re2618102\href(httpsNtree-dimensional coverage path planning via viewpoint re281866\href(httpsNavigation Planning for Legged Robots in Challenging Terra301858\href(httpsNavigation Planning refor 3D exploration and sur3119110\href(httpsShape Sensing Techniques for Continuum Robots in Minimi32331930\href(https311910\href(httpsShape Sensing Techniques for Continuum Robots in Minimi32331930\href(https	13	2	112	https: Self-Organization as a Supporting Paradigm for Military UA\
16283\href(https Internet of Vehicles: From intelligent grid to autonomous c17283\href(https Gait and Trajectory Optimization for Legged Systems Throu18277\href(https Optimization of Wireless Sensor Network and UAV Data Acc192177\href(https On Estimation of Wireless Sensor Network and UAV Data Acc20274\href(https On Estimation of Wineless Sensor Network and UAV Data Acc2118378\href(https AirSim: High-Fidelity Visual and Physical Simulation for Aut2218132\href(https From Perception to Decision: A Data-Driven Approach to Er2318132\href(https Structural Inspection Path Planning via Iterative Viewpoint2518105\href(https Robot navigation in dense human crowds: Statistical mode2618102\href(https Navigation Planning for Legged Robots in Challenging Terra301860\href(https Navigation Planning for Legged Robots in Challenging Terra301858\href(https Gait adaptation to visual kinematic perturbations using a r311963\href(https Gait adaptation to visual kinematic perturbations using a r3434\href(https AWheeled Wall-Climbing Robot with Bio-Inspired Spine M351940\href(https Atheeled Wall-Climbing for Carle Qok, and the Law:401926\href(https Atheeled Wall-Climbing Robot with Bio-Inspired Spine M351940\href(https Fall Detection and Prevention Control Using Walking-Aid C36	14	2	100	https: Sampling-Based Path Planning for UAV Collision Avoidance
17283\href(httpsGait and TrajectoryOptimization for Legged Systems Throu18277\href(httpsOptimization of WirelessSensor Network and UAV Data Acc192177\href(httpsOptimization of WirelessSensor Network and UAV Data Acc20274\href(httpsOn Estimation of WirelessSensor Network and UAV Data Acc2118378\href(httpsArristim: High-FidelityVisual and Physical Simulation for Aut2218143\href(httpsReceding Horizon "Next-Best-View" Planner for 3D Explore2318113\href(httpsRobot navigation in dense human crowds: Statistical mode2618102\href(httpsNotion Planning Among Dynamic, Decision-Making Agents271879\href(httpsNavigation Planning for JD exploration and sur2860\href(httpsNavigation Planning for Legged Robots in Challenging Terra3018\href(httpsShape Sensing Techniques for Continuum Robots in Minim:311963\href(httpsFold Predictive Flocking Control for Second-Order Multi-331963\href(httpsFold Predictive Flocking Control Multi-341940\href(httpsSata Adpatation to visual kinematic perturbations using a risk371934\href(httpsSata Adpatation to visual kinematic perturbations using a risk381940\href(httpsSata Precee-Based Nonlinear Model Precee-Based Nonlinear Model	15	2	84	https: Gibson Env: Real-World Perception for Embodied Agents
18277httpsOptimization of WirelessSensorNetwork and UAV Data Acc192177\href{httpsOptimization of WirelessSensorNetwork and UAV Data Acc20274\href{httpsOptimization of WirelessSensorNetwork and UAV Data Acc2118378\href{httpsChestimation of WirelessSensorNetwork and UAV Data Acc2218143\href{httpsStructuralNext-Best-View"Planner for 3D Explora2318132\href{httpsFrom Perception to Decision: A Data-Driven Approach to Er2418113\href{httpsStructuralInspection Path Planning via Iterative Viewpoint to2518102\href{httpsMotion Planning Among Dynamic, Decision-Making Agents2718102\href{httpsNavigation Planning for 3D exploration and sur281866\href{httpsNavigation Planning for Legged Robots in Challenging Terra303119110\href{httpsShareb Sensing Techniques for Continuum Robots in Minim:321983\href{httpsGait adaptation to visual kinematic perturbations using a r341949\href{httpsFiltpsFiltps351940\href{httpsSait adaptation to visual kinematic perturbations using a r36351934\href{httpsSait adaptation to visual kinematic perturbations using a r361934\href{https <th>16</th> <th>2</th> <th>83</th> <th>https Internet of Vehicles: From intelligent grid to autonomous c</th>	16	2	83	https Internet of Vehicles: From intelligent grid to autonomous c
192177Nhref{httpsOptimization of Wireless Sensor Network and UAV Data Acc20274httpsOn Estimation of Wind Velocity, Angle-of-Attack and Sidesli2118378\href{httpsAirSim: High-Fidelity Visual and Physical Simulation for Aut2218143\href{httpsReceding Horizon "Next-Best-View" Planner for 3D Explor:2318132\href{httpsFrom Perception to Decision: A Data-Driven Approach to Er2418113\href{httpsStructural Inspection Path Planning via Iterative Viewpoint2518102\href{httpsNoter Planning Among Dynamic, Decision-Making Agents271879\href{httpsNote Planning for 3D exploration and sur28106\href{httpsNavigation Planning for J Decyloration and sur291860\href{httpsNavigation Planning for Concave areas by a heteroj3119110\href{httpsGait adaptation to visual kinematic perturbations using a ri341949\href{httpsAufeled Wall-Climbing Robot with Bio-Inspired Spine M351940\href{httpsFall Detection and Prevention Control Using Walking-Aid381930\href{httpsNarefIttpsSpecial Zone, Robots, and the Law:401926\href{httpsState network based predictive control with particles371934\href{httpsNarefIttpsState adaptation to visual kinematic perturbations using a ri34 <td< th=""><th>17</th><th>2</th><th>83</th><th>https Gait and Trajectory Optimization for Legged Systems Throu</th></td<>	17	2	83	https Gait and Trajectory Optimization for Legged Systems Throu
20274 https On Estimation of Wind Velocity, Angle-of-Attack and Sidesli2118378 \href{https AirSim: High-Fidelity Visual and Physical Simulation for Aut2218143 \href{https Receding Horizon "Next-Best-View" Planner for 3D Explore2318132 \href{https From Perception to Decision: A Data-Driven Approach to Et2418113 \href{https Structural Inspection Path Planning via Iterative Viewpoint2518105 \href{https Robot navigation in dense human crowds: Statistical mode2618102 \href{https Roceding horizon path planning via viewpoint re2860 \href{https Navigation Planning for Legged Robots in Challenging Terra301858 \href{https Distributed coverage control for concave areas by a heterog3119110 \href{https Gait adaptation to visual kinematic perturbations using ar331963 \href{https Fall Detection and Prevention Control Using Walking-Aid C341949 \href{https Fall Detection and Prevention Control Using Walking-Aid C351930 \href{https Fall Detection and Prevention Control Using Walking-Aid C361934 \href{https Fall Detection and Prevention Control Using Walking-Aid C371934 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:4121133 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:42441414451415461934 \href{ht	18	2	77	https: Optimization of Wireless Sensor Network and UAV Data Acc
2118378 https AirSim: High-Fidelity Visual and Physical Simulation for Aut2218143 \href{https Receding Horizon "Next-Best-View" Planner for 3D Explor:2318132 \href{https From Perception to Decision: A Data-Driven Approach to Er2418113 \href{https Robot navigation in dense human crowds: Statistical mode2618102 \href{https Motion Planning Among Dynamic, Decision-Making Agents271879 \href{https Intere dimensional coverage path planning via viewpoint re281866 \href{https Navigation Planning for 3D exploration and sur291860 \href{https Navigation Planning for Legged Robots in Challenging Terra301858 \href{https Shape Sensing Techniques for Continuum Robots in Minimi321983 \href{https Model Predictive Flocking Control for Second-Order Multi-331963 \href{https Fall Detection and Prevention Control Using Walking-Aid C36371934 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:371934 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401928 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:41113\href{https Intersection of Sight Guidance and Control of Underactuat42143143441928 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:451930 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:461928 \href{https Intersection of "Tokku" Special Zone, Ro	19	21	77	https: Optimization of Wireless Sensor Network and UAV Data Acc
2218143 \href\https Receding Horizon "Next-Best-View" Planner for 3D Explor:2318132 \href\https From Perception to Decision: A Data-Driven Approach to Er2418113 \href\https Structural Inspection Path Planning via Iterative Viewpoint2518105 \href\https Robot navigation in dense human crowds: Statistical mode2618102 \href\https Robot navigation in dense human crowds: Statistical mode271879 \href\https Receding horizon path planning via viewpoint re281866 \href\https Receding horizon path planning for 3D exploration and sur291860 \href\https Navigation Planning for Legged Robots in Challenging Terra301858 \href\https Distributed coverage control for concave areas by a heteroq3119110 \href\https Shape Sensing Techniques for Continuum Robots in Minimi321983 \href\https Gait adaptation to visual kinematic perturbations using a ri341949 \href\https Fall Detection and Prevention Control Using Walking-Aid C36371934 \href\https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href\https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href\https Integral Line-of-Sight Guidance and Control of Underactuat4216\href\https Integral Line-of-Sight Guidance for Abots: Biologically Inspired Sw4451 \href\https Integral Line-of-Sight Guidance for Path Following Control44151 \href\https Integral Line-of-Sight Guidance for Robot Recognitio44151 \href\ht	20	2	74	https: On Estimation of Wind Velocity, Angle-of-Attack and Sidesli
2218143 https Receding Horizon "Next-Best-View" Planner for 3D Explor:2318132 \href{https From Perception to Decision: A Data-Driven Approach to Er2418113 \href{https Structural Inspection Path Planning via Iterative Viewpoint2518105 \href{https Robot navigation in dense human crowds: Statistical mode2618102 \href{https Motion Planning Among Dynamic, Decision-Making Agents271879 \href{https Three-dimensional coverage path planning via viewpoint re281860 \href{https Navigation Planning for 3D exploration and sur291860 \href{https Navigation Planning for Legged Robots in Challenging Terra301858 \href{https Distributed coverage control for concave areas by a heterog3119110 \href{https Shape Sensing Techniques for Continuum Robots in Minimi321983 \href{https Gait adaptation to visual kinematic perturbations using a ri341940 \href{https Fall Detection and Prevention Control Using Walking-Aid C36371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401928 \href{https Integral Line-of-Sight Guidance and Control of Underactuat42432164 \href{https Integral Line-of-Sight Guidance and Control of Underactuat44442154 \href{https Integral Line-of-Sight Guidance for Path Following Control46212321372934 \href{https Integra	21	18	378	https AirSim: High-Fidelity Visual and Physical Simulation for Aut
2418113\href(httpsStructural Inspection Path Planning via Iterative Viewpoint2518105\href(httpsRobot navigation in dense human crowds: Statistical mode2618102\href(httpsMotion Planning Among Dynamic, Decision-Making Agents271879\href(httpsThree-dimensional coverage path planning via viewpoint re281866\href(httpsNavigation Planning for JD exploration and sur291860\href(httpsNavigation Planning for Legged Robots in Challenging Terra301858\href(httpsDistributed coverage control for concave areas by a heterog3119110\href(httpsShape Sensing Techniques for Continuum Robots in Minimi321983\href(httpsGait adaptation to visual kinematic perturbations using ari341949\href(httpsFall Detection and Prevention Control Using Walking-Aid C361934\href(httpsFall Detection and Prevention Control Using Walking-Aid C361934\href(httpsFall Detection of "Tokku" Special Zone, Robots, and the Law:401926\href(httpsIntersection of "Tokku" Special Zone, Robots, and the Law:401926\href(httpsIntersection of "Tokku" Special Zone, Robots, and the Law:41113113\href(httpsIntergal Line-of-Sight Guidance and Control of Underactuat422164\href(httpsIntergal Line-of-Sight Guidance for Path Following Contr	22	18	143	https: Receding Horizon "Next-Best-View" Planner for 3D Explore
2518105\href(httpsRobot navigation in dense human crowds: Statistical mode2618102\href(httpsMotion Planning Among Dynamic, Decision-Making Agents271879\href(httpsThree-dimensional coverage path planning via viewpoint rc281866\href(httpsReceding horizon path planning for 3D exploration and sur291860\href(httpsNavigation Planning for Legged Robots in Challenging Terra301858\href(httpsDistributed coverage control for concave areas by a heterog3119110\href(httpsShape Sensing Techniques for Continuum Robots in Minimi321983\href(httpsGait adaptation to visual kinematic perturbations using an341949\href(httpsFall Detection and Prevention Control Using Walking-Aid C361934\href(httpsFall Detection and Prevention Control Using Walking-Aid C36371934\href(httpsIntersection of "Tokku" Special Zone, Robots, and the Law:401926\href(httpsIntersection of "Tokku" Special Zone, Robots, and the Law:4121133\href(httpsIntergral Line-of-Sight Guidance and Control of Underactuat422164\href(httpsIntergral Line-of-Sight Guidance for Path Following Control432159\href(httpsIntergral Line-of-Sight Guidance for Robots, Biologically Inspired Sp442151\href(httpsIntergral Line-of-Sight Gui	23	18		
2618102 https Motion Planning Among Dynamic, Decision-Making Agents271879 \href{https Three-dimensional coverage path planning via viewpoint re281866 \href{https Receding horizon path planning for 3D exploration and sur291860 \href{https Navigation Planning for Legged Robots in Challenging Terra301858 \href{https Distributed coverage control for concave areas by a heterog3119110 \href{https Shape Sensing Techniques for Continuum Robots in Minimi321983 \href{https Gait adaptation to visual kinematic perturbations using an341949 \href{https Fall Detection and Prevention Control Using Walking-Aid C361934 \href{https Echo state network based predictive control with particles371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Integral Line-of-Sight Guidance and Control of Underactuat442151 \href{https Integral Line-of-Sight Guidance for Path Following Control442151 \href{https Integral Line-of-Sight Guidance for Robot Mainpulators482140 \href{https Integral Line-of-Sight Guidance for Robot Manipulators	24	18	113	https: Structural Inspection Path Planning via Iterative Viewpoint
271879 https Three-dimensional coverage path planning via viewpoint re281866 \href{https Receding horizon path planning for 3D exploration and sur291860 \href{https Navigation Planning for Legged Robots in Challenging Terra301858 \href{https Distributed coverage control for concave areas by a heterog3119110 \href{https Shape Sensing Techniques for Continuum Robots in Minimi321983 \href{https Model Predictive Flocking Control for Second-Order Multi-331963 \href{https Gait adaptation to visual kinematic perturbations using a ri341949 \href{https Fall Detection and Prevention Control Using Walking-Aid C361940 \href{https Ext Detection and Prevention Control using Walking-Aid C361934 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:371934 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:391928 \href{https Intergal Line-of-Sight Guidance and Control of Underactuat4121133 \href{https Intergal Line-of-Sight Guidance and Control of Underactuat422164 \href{https Intergal Line-of-Sight Guidance for Path Following Control442151 \href{https Intergal Line-of-Sight Guidance for Robot Manipulators452151 \href{https Intergal Line-of-Sight Guidance for Robot Manipulators462151 \href{https Intergal Line-of-Sight Guidance for Robot Manipulators472142 \href{https Intergal Line-of-Sight Guidance for Robot Manipulators4821 <th>25</th> <th>18</th> <th>105</th> <th>https Robot navigation in dense human crowds: Statistical mode</th>	25	18	105	https Robot navigation in dense human crowds: Statistical mode
281866httpsReceding horizon path planning for 3D exploration and sur291860\href{httpsNavigation Planning for Legged Robots in Challenging Terra301858\href{httpsDistributed coverage control for concave areas by a heterog3119110\href{httpsShape Sensing Techniques for Continuum Robots in Minimi321983\href{httpsModel Predictive Flocking Control for Second-Order Multi-331963\href{httpsGait adaptation to visual kinematic perturbations using a ri341949\href{httpsFall Detection and Prevention Control Using Walking-Aid C361940\href{httpsEcho state network based predictive control with particles371934\href{httpsBio-Inspired Embedded Vision System for Autonomous Mic381930\href{httpsIntersection of "Tokku" Special Zone, Robots, and the Law:401926\href{httpsIntegral Line-of-Sight Guidance and Control of Underactuat4121133\href{httpsIntegral Line-of-Sight Guidance for Poth Following Control432151\href{httpsIntegral Line-of-Sight Guidance for Poth Following Control442151\href{httpsIntegral Line-of-Sight Guidance for Robot Manipulators482140\href{httpsSingularity Analysis and Avoidance for Robot Manipulators482140\href{httpsSingularity Analysis and Avoidance for Robot Manipul	26	18	102	https Motion Planning Among Dynamic, Decision-Making Agents
291860 https Navigation Planning for Legged Robots in Challenging Terra301858 \href{https Distributed coverage control for concave areas by a heterog3119110 \href{https Shape Sensing Techniques for Continuum Robots in Minimi321983 \href{https Model Predictive Flocking Control for Second-Order Multi-331963 \href{https Gait adaptation to visual kinematic perturbations using a ri341949 \href{https Fall Detection and Prevention Control Using Walking-Aid C361934 \href{https Echo state network based predictive control with particles371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Integral Line-of-Sight Guidance for Path Following Control442151 \href{https Integral Line-of-Sight Guidance for Path Following Control462141 \href{https Integral Line-of-Sight Guidance for Path Following Control472142 \href{https Integral Line-of-Sight Guidance for Robot Manipulators482140 \href{https Singularity Analysis and Avoidance for Robot Manipulators	27	18	79	https Three-dimensional coverage path planning via viewpoint re
301858 \href\https Distributed coverage control for concave areas by a heterof3119110 \href\https Shape Sensing Techniques for Continuum Robots in Minimi321983 \href\https Model Predictive Flocking Control for Second-Order Multi-331963 \href\https Gait adaptation to visual kinematic perturbations using a ri341949 \href\https Fall Detection and Prevention Control Using Walking-Aid C361934 \href\https Fall Detection and Prevention Control Using Walking-Aid C361934 \href\https Echo state network based predictive control with particles371934 \href\https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href\https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href\https Choos and Bifurcation Control of Torque-Stiffness-Controll4121133 \href\https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href\https Integral Line-of-Sight Guidance and Control of Underactuat432151 \href\https Integral Line-of-Sight Guidance for Path Following Control462151 \href\https Integral Line-of-Sight Guidance for Path Following Control462145 \href\https Integral Line-of-Sight Guidance for Path Following Control462151 \href\https Integral Line-of-Sight Guidance for Path Following Control472142 \href\https Integral Line-of-Sight Guidance for Robots Manipulators482140 \href\https Singularity Analysis and Avoidance for Robot Manipulators48 <th>28</th> <th>18</th> <th>66</th> <th>https Receding horizon path planning for 3D exploration and sur</th>	28	18	66	https Receding horizon path planning for 3D exploration and sur
3119110 https Shape Sensing Techniques for Continuum Robots in Minimi321983 \href{https Model Predictive Flocking Control for Second-Order Multi-331963 \href{https Gait adaptation to visual kinematic perturbations using a ri341949 \href{https A Wheeled Wall-Climbing Robot with Bio-Inspired Spine M351940 \href{https Fall Detection and Prevention Control Using Walking-Aid C361934 \href{https Echo state network based predictive control with particles371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Integral Line-of-Sight Guidance and Control of Underactuat432151 \href{https Innovation in Underwater Robots: Biologically Inspired Sw452151 \href{https Integral Line-of-Sight Guidance for Path Following Control462142 \href{https Integral Line-of-Sight Guidance for Robot Manipulators482141 \href{https Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	29	18	60	https: Navigation Planning for Legged Robots in Challenging Terra
321983 https Model Predictive Flocking Control for Second-Order Multi-331963 \href{https Gait adaptation to visual kinematic perturbations using a ri341949 \href{https A Wheeled Wall-Climbing Robot with Bio-Inspired Spine M351940 \href{https Fall Detection and Prevention Control Using Walking-Aid C361934 \href{https Echo state network based predictive control with particles371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Weakly Paired Multimodal Fusion for Object Recogniti432151 \href{https Integral Line-of-Sight Guidance for Path Following Control442151 \href{https Integral Line-of-Sight Guidance for Path Following Control462145 \href{https Integral Line-of-Sight Guidance for Path Following Control462140 \href{https Integral Line-of-Sight Guidance for Path Following Control46214151 \href{https Integral Line-of-Sight Guidance for Robot Kanipulators482140 \href{https Singularity Analysis and Avoidance for Robot Manipulators	30	18	58	https: Distributed coverage control for concave areas by a heterog
331963 https Gait adaptation to visual kinematic perturbations using a ri341949 \href{https A Wheeled Wall-Climbing Robot with Bio-Inspired Spine M351940 \href{https Fall Detection and Prevention Control Using Walking-Aid C361934 \href{https Echo state network based predictive control with particles371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Integral Line-of-Sight Guidance and Control of Underactuat4121133 \href{https Integral Line-of-Sight Guidance for Pote Recogniti432151 \href{https Integral Line-of-Sight Guidance for Path Following Control462151 \href{https Integral Line-of-Sight Guidance for Path Following Control46214151 \href{https Integral Line-of-Sight Guidance for Robots: Biologically Inspired Sw452151 \href{https Integral Line-of-Sight Guidance for Path Following Control46214142474242484341	31	19	110	https: Shape Sensing Techniques for Continuum Robots in Minima
341949 https A Wheeled Wall-Climbing Robot with Bio-Inspired Spine M351940 \href{https Fall Detection and Prevention Control Using Walking-Aid C361934 \href{https Echo state network based predictive control with particles371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https An Echo State Gaussian Process-Based Nonlinear Model Pre391928 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Integral Line-of-Sight Guidance and Control of Underactuat4121133 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Innovation in Underwater Robots: Biologically Inspired Sw452151 \href{https Integral Line-of-Sight Guidance for Path Following Control462145 \href{https Integral Line-of-Sight Guidance for Path Following Control472140 \href{https Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	32	19	83	https: Model Predictive Flocking Control for Second-Order Multi-
351940 https Fall Detection and Prevention Control Using Walking-Aid C361934 \href{https Echo state network based predictive control with particles371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https An Echo State Gaussian Process-Based Nonlinear Model Pre391928 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Integral Line-of-Sight Guidance and Control of Underactuat4121133 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Integral Line-of-Sight Guidance and Control of Underactuat432159 \href{https Integral Line-of-Sight Guidance for Path Following Control442151 \href{https Integral Line-of-Sight Guidance for Path Following Control462151 \href{https Integral Line-of-Sight Guidance for Path Following Control462145 \href{https Integral Line-of-Sight Guidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	33	19	63	https: Gait adaptation to visual kinematic perturbations using a reference of the second secon
361934 https Echo state network based predictive control with particles371934 \href{https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https An Echo State Gaussian Process-Based Nonlinear Model Pre391928 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Chaos and Bifurcation Control of Torque-Stiffness-Controlle4121133 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Extreme Kernel Sparse Learning for Tactile Object Recogniti432159 \href{https Integral Line-of-Sight Guidance for Object Recognition442151 \href{https Integral Line-of-Sight Guidance for Path Following Control452151 \href{https Integral Line-of-Sight Guidance for Path Following Control462145 \href{https Integral Line-of-Sight Guidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	34	19	49	https: A Wheeled Wall-Climbing Robot with Bio-Inspired Spine M
371934 https Bio-Inspired Embedded Vision System for Autonomous Mic381930 \href{https An Echo State Gaussian Process-Based Nonlinear Model Pre391928 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:4121133 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Extreme Kernel Sparse Learning for Tactile Object Recogniti432159 \href{https Innovation in Underwater Robots: Biologically Inspired Sw452151 \href{https Integral Line-of-Sight Guidance for Path Following Control462151 \href{https Integral Line-of-Sight Guidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	35	19	40	https: Fall Detection and Prevention Control Using Walking-Aid C
381930 https An Echo State Gaussian Process-Based Nonlinear Model Pre391928 \href{https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Chaos and Bifurcation Control of Torque-Stiffness-Controlle4121133 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Extreme Kernel Sparse Learning for Tactile Object Recogniti432159 \href{https Innovation in Underwater Robots: Biologically Inspired Sw452151 \href{https Integral Line-of-Sight Guidance for Path Following Control462141 \href{https Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	36	19	34	https: Echo state network based predictive control with particle s
391928 https Intersection of "Tokku" Special Zone, Robots, and the Law:401926 \href{https Chaos and Bifurcation Control of Torque-Stiffness-Controll4121133 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Extreme Kernel Sparse Learning for Tactile Object Recogniti432159 \href{https Integral Line-of-Sight Guidance for Object Recognition442151 \href{https Integral Line-of-Sight Guidance for Path Following Control452151 \href{https Integral Line-of-Sight Guidance for Path Following Control462142 \href{https Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	37	19	34	https: Bio-Inspired Embedded Vision System for Autonomous Mic
401926 https Chaos and Bifurcation Control of Torque-Stiffness-Controlle4121133 \href{https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Extreme Kernel Sparse Learning for Tactile Object Recogniti432159 \href{https Weakly Paired Multimodal Fusion for Object Recognition442151 \href{https Integral Line-of-Sight Guidance for Poth Following Control452151 \href{https Integral Line-of-Sight Guidance for Path Following Control462142 \href{https Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	38	19	30	https: An Echo State Gaussian Process-Based Nonlinear Model Pre
4121133 https Integral Line-of-Sight Guidance and Control of Underactuat422164 \href{https Extreme Kernel Sparse Learning for Tactile Object Recogniti432159 \href{https Weakly Paired Multimodal Fusion for Object Recognition442151 \href{https Innovation in Underwater Robots: Biologically Inspired Sw452151 \href{https Integral Line-of-Sight Guidance for Path Following Control462145 \href{https An Assistive Navigation Framework for the Visually Impaired472142 \href{https Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	39	19	28	https:Intersection of "Tokku" Special Zone, Robots, and the Law:
422164 https: Extreme Kernel Sparse Learning for Tactile Object Recogniti432159 \href{https: Weakly Paired Multimodal Fusion for Object Recognition442151 \href{https: Innovation in Underwater Robots: Biologically Inspired Sw452151 \href{https: Integral Line-of-Sight Guidance for Path Following Control462145 \href{https: An Assistive Navigation Framework for the Visually Impaired472142 \href{https: Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https: Structured Output-Associated Dictionary Learning for Hapt	40	19	26	https: Chaos and Bifurcation Control of Torque-Stiffness-Controlle
432159 https: Weakly Paired Multimodal Fusion for Object Recognition442151 \href{https: Innovation in Underwater Robots: Biologically Inspired Sw452151 \href{https: Integral Line-of-Sight Guidance for Path Following Control462145 \href{https: An Assistive Navigation Framework for the Visually Impaired472142 \href{https: Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https: Structured Output-Associated Dictionary Learning for Hapt	41	21	133	https:Integral Line-of-Sight Guidance and Control of Underactuat
442151 https: Innovation in Underwater Robots: Biologically Inspired Sw452151 \href{https: Integral Line-of-Sight Guidance for Path Following Control462145 \href{https: An Assistive Navigation Framework for the Visually Impaired472142 \href{https: Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https: Structured Output-Associated Dictionary Learning for Hapt	42	21	64	https: Extreme Kernel Sparse Learning for Tactile Object Recogniti
452151 https: Integral Line-of-Sight Guidance for Path Following Control462145 \href{https: An Assistive Navigation Framework for the Visually Impaired472142 \href{https: Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https: Structured Output-Associated Dictionary Learning for Hapt	43	21	59	https: Weakly Paired Multimodal Fusion for Object Recognition
462145 https: An Assistive Navigation Framework for the Visually Impaired472142 \href{https: Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https: Structured Output-Associated Dictionary Learning for Hapt	44	21	51	https:Innovation in Underwater Robots: Biologically Inspired Sw
472142 https Singularity Analysis and Avoidance for Robot Manipulators482140 \href{https Structured Output-Associated Dictionary Learning for Hapt	45	21	51	https:Integral Line-of-Sight Guidance for Path Following Control
48 21 40 https: Structured Output-Associated Dictionary Learning for Hapt	46	21	45	https: An Assistive Navigation Framework for the Visually Impaire
	47	21	42	https: Singularity Analysis and Avoidance for Robot Manipulators
	48	21	40	https: Structured Output-Associated Dictionary Learning for Hapt
49 21 40 https: PointNetGPD: Detecting Grasp Configurations from Point S	49	21	40	https:PointNetGPD: Detecting Grasp Configurations from Point S
50 24 73 https: Adaptive Fuzzy Backstepping Control for Stable Nonlinear E	50	24	73	https: Adaptive Fuzzy Backstepping Control for Stable Nonlinear E

51	24	68	https: Reliable Intelligent Path Following Control for a Robotic Ai
52	24		https: Solution of an Economic Dispatch Problem Through Particl
53	24		https: The Obstacle Detection and Obstacle Avoidance Algorithm
54	24		https: Adaptive robust INS/UWB-integrated human tracking using
55	24		https://doptive/objasting/outprintegrated indian tracking using using \href{https://doptive/objasting/outprintegrated indiana tracking using usi
56	24		https: A Learning-Based Fault Tolerant Tracking Control of an Unr
57	24		https: RBF-Neural-Network-Based Adaptive Robust Control for No
58	24		https: Complete and Time-Optimal Path-Constrained Trajectory P
59	24		https Adaptive controller design for underwater snake robot with
60	26		https: Lane Change and Merge Maneuvers for Connected and Auto
61	26		https: Prospect Theory for Enhanced Cyber-Physical Security of Dr
62	26		https: Design Automation of Cyber-Physical Systems: Challenges,
63	26		https Engineering Trust in Complex Automated Systems
64	26		https Distributed Conflict Resolution for Connected Autonomou
65	26	34	https: Cyber-Physical Systems: A Security Perspective
66	26	31	https Developing a Distributed Consensus-Based Cooperative Ada
67	26	31	https: A non-conservatively defensive strategy for urban autonom
68	26	28	https: Spatially-Partitioned Environmental Representation and PI
69	26	25	https: Testing Autonomous Vehicle Software in the Virtual Protot
70	26	25	https: Testing Autonomous Vehicle Software in the Virtual Protot
71	27	167	https: 2 month evening and night closed-loop glucose control in p
72	27	167	https: Standardizing Clinically Meaningful Outcome Measures Bey
73	27	130	https: Day and night glycaemic control with a bionic pancreas ver
74	27	93	https: Day and Night Closed-Loop Control Using the Integrated Me
75	27		https: Randomized Crossover Comparison of Personalized MPC an
76	27		https: Day-and-Night Closed-Loop Glucose Control in Patients Wi
77	27		https: Continuous Glucose Monitoring, Future Products, and Upc
78	27		https: Glycemia, Treatment Satisfaction, Cognition, and Sleep Qua
79	27		https Closed-Loop Control Without Meal Announcement in Type
80	27		https: Circadian Variability of Insulin Sensitivity: Physiological Ing
81	30		https:Trust Management for SOA-Based IoT and Its Application to
82	30		https: Trust-Based Service Management for Social Internet of Thin
83	30		https: A survey of trust computation models for service managem
84	30		https: A Survey on Trust Modeling
85	30		https: Fair Resource Allocation in an Intrusion-Detection System f
86	30		https: On the Design of a Blockchain Platform for Clinical Trial and
87 88	30 30		https: Deep Learning of Transferable Representation for Scalable C https: Trust-Based Decision Making for Health IoT Systems
89	30		https: HUOPM: High-Utility Occupancy Pattern Mining
90	30		https: Cooperative Heterogeneous Multi-Robot Systems: A Survey
91	31		https: Time-Varying Formation Tracking for Second-Order Multi-A
92	31		https: Time-varying formation control for general linear multi-age
93	31		https: Secure and Trustable Electronic Medical Records Sharing us
94	31		https HumanRobot Interaction Control of Rehabilitation Robots
95	31		https: Path following control for marine surface vessel with uncer
96	31		https Adaptive Backstepping Control of Spacecraft Rendezvous ar
97	31		https: Distributed consensus tracking for multi-agent systems unc
98	31		https: Distributed Formation and Reconfiguration Control of VTO
99	31		https: Formation-containment control for high-order linear time
100	31		https: A novel control scheme for quadrotor UAV based upon acti
	-		

p Reinforcement Learning
Networks
for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud
allenge Trials
> Social and Physical Constraints
al-Time Color Correction of Monocular Underwater Images
ensor Attacks: A Satisfiability Modulo Theory Approach
lication to the Humanoid Robot Atlas
> mous Driving
dic elastomer manipulator

recision Agriculture

✓ Relay Networks

ars and vehicular fogs gh Phase-Based End-Effector Parameterization juisition juisition ip Angle of Small UAVs Using Standard Sensors :onomous Vehicles ation nd-to-End Motion Planning for Autonomous Ground Robots : Resampling with Application to Aerial Robotics Is and experimental studies of human-robot cooperation with Deep Reinforcement Learning ssampling and tour optimization for aerial robots face inspection in geneous Robot-Swarm with visibility sensing constraints ally Invasive Surgery: A Survey Agent Systems with Input Constraints eal-time closed-loop brain-computer interface to a virtual reality avatar echanisms ane Robot warm optimization for pneumatic muscle actuator ro-Robots: The LGMD Case dictive Control for Pneumatic Muscle Actuators A Case Study on Legal Impacts to Humanoid Robots ed Dynamic Bipedal Walking :ed Marine Vehicles: Theory, Simulations, and Experiments on imming Snake Robots of Underwater Snake Robots: Theory and Experiments d With Nonspherical Wrists :ic Understanding Sets silateral Teleoperation Manipulators With Enhanced Transparency Performance rship Against Sensor Faults le Swarm Optimization: A Detailed Survey - Part I Based on 2-D Lidar g UFIR filter bank g of Wheeled Mobile Robots nanned Quadrotor Helicopter Inlinear Bilateral Teleoperation Manipulators With Uncertainty and Time Delay lanning With Torque and Velocity Constraints: Theory and Applications n unmatched uncertainties mated Vehicles: A Survey "one Delivery Systems: A Network Interdiction Game Advances, and Opportunities

s Vehicles

aptive Cruise Control System for Heterogeneous Vehicles with Predecessor Following Topology ous driving anning Architecture for On-Road Autonomous Driving yping Environment yping Environment patients with type 1 diabetes under free-living conditions: a randomised crossover trial vond HbA1c for Type 1 Diabetes: A Consensus Report of the American Association of Clinical Endocrinologist sus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised cross edtronic Hybrid Closed-Loop System in Type 1 Diabetes at Diabetes Camp Id PID Control Algorithms for the Artificial Pancreas th Type 1 Diabetes Under Free-Living Conditions: Results of a Single-Arm 1-Month Experience Compared Wi late on Worldwide Artificial Pancreas Projects ality in Adults and Adolescents with Type 1 Diabetes When Using a Closed-Loop System Overnight Versus Sei 1 Diabetes out for In Silico Artificial Pancreas Service Composition gs Systems ent in internet of things systems

or Edge Computing Precision Medicine Domain Adaptation

Igent Systems Subjected to Switching Topologies With Application to Quadrotor Formation Flying Int systems with switching directed topologies Sing Blockchain. With Series Elastic Actuators tainties and input saturation Ind Proximity Operations With Input Saturation and Full-State Constraint ler two types of attacks IL UAVS -invariant multi-agent systems with time delays ve disturbance rejection control

ts, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Socie over trial

th a Previously Reported Feasibility Study of Evening and Night at Home

nsor-Augmented Pump with Low-Glucose Suspend Function: A Randomized Crossover Study

ety, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Societ

:y, and the T1D Exchange

	community	ions Resear	First name	Last name	esearch org S p	oublicatical pu	blicatiof	first public
0	1	https:	Aaron D	Ames	California l	51	353	2004
1	1	https:	Mykel John	Kochender	Stanford Ur	47	334	2003
2	1	https:	Claire Jenni	Tomlin	University (44	547	1995
3	1	https:	Sanjit A	Seshia	University (28	287	1999
4	1	https:	Francesco	Borrelli	University (24	273	2000
5	1	https:	Marco	Pavone	Stanford Ur	23	281	2006
6	1	https:	George J	Pappas	University (20	621	1992
7	1	https:	Anca Diana	Dragan	University (19	148	2009
8	1	https:	Dorsa	Sadigh	Stanford Ur	18	115	2012
9	1	https:	Silvio	Savarese	Stanford Ur	17	310	2001
10	2	https:	Vijay R	Kumar	University (56	714	1988
11	2	https:	Tor Arne	Johansen	Norwegian	54	668	1992
12	2	https:	Magnus B	Egerstedt	Georgia Ins	34	506	1998
13	2	https:	Pratap	Tokekar	University S	31	113	2009
14	2	https:	Marco	Hutter	ETH Zurich,	25	184	2009
15	2	https:	Robert	Fitch	University (23	108	2001
16	2	https:	Sivakumar	Rathinam	Texas A\&ℕ	21	250	1997
17	2	https:	Martin	Saska	Czech Tech	21	123	2006
18	2	https	Rajnikant	Sharma	University (20	74	2008
19	2	https:	M Ani	Hsieh	University (19	111	2005
20	18	https:	Roland Yve:	Siegwart	ETH Zurich,	56	845	1991
21	18	https	Jonathan P	How	Massachuse	26	585	1990
22	18	https:	Erdal	Kayacan	Aarhus Uni [,]	23	163	2006
23	18	https:	Sebastian A	Scherer	Carnegie M	23	136	2006
24	18	https	Juan I	Nieto	ETH Zurich,	22	231	2003
25	18	https:	Holger	Voos	University (21	197	1999
26	18	https:	Anthony P	Tzes	New York U	19	333	1987
27	18	https:	Pascual	Campoy	Technical U	17	153	1985
28	18	https:	Rong	Xiong	Zhejiang Ur	16	176	2006
29	18	https:	Angela P	Schoellig	University (16	144	2011
30	19	https:	Qiang	Huang	Beijing Inst	51	540	1998
31	19	https:	Zhangguo	Yu	Beijing Inst	27	132	2007
32	19	https:	Marco	Ceccarelli	University (27	539	1992
33	19	https:	Atsuo	Takanishi	Waseda Un	26	754	1985
34	19	https:	Xuechao	Chen	Beijing Inst	26	118	2008
35	19	https:	Kenji	Hashimoto	Meiji Unive	22	201	2004
36	19	https:	Min Zhou	Luo	Hohai Univ	22	112	2004
37	19	https:	Weimin	Zhang	Beijing Inst	18	106	2003
38	19	https:	Giuseppe	Carbone	University (18	267	2001
39	19	https:	Aiguo	Ming	University (17	282	1988
40	21	https:	Kristin Ytte	Pettersen	Norwegian	40	299	1996
41	21	https:	Bin	Liang	Tsinghua U	38	281	1997
42	21	https:	Jan Tommy	Gravdahl	Norwegian	29	249	1994
43		https:	•	Wang	Tsinghua U	29	128	2008
44		https:	-	Shen	National Ur	29	194	2001
45		https:		Sun	Tsinghua U	28	568	1996
46		https:		Xu	Harbin Inst	27	193	2006
47		https:	-	Wang	National Ur	19	94	2008
48		https:	-	Li	Harbin Inst	18	229	2005
49		https:		Zhang	Universität	17	500	1996
50	24	https:	Shu-Gen	Ma	Ritsumeika	49	484	1988

51 // hrot/httn: Vi_Rin II Shandong //	204	2004
51 24 https: Yi-Bin Li Shandong \ 41	281	2004
52 24 https: Xue Wen Rong Shandong l 27	101	2010
53 24 https: Yong-Chun Fang Nankai Univ 24	270	2003
54 24 https:Jun Luo Shanghai U 21	1061	2000
5524 https: Xue-BoZhangNankai Univ18	97	2008
56 24 https: Wu-Xi Shi Tianjin Poly 18	53	2010
5724 https: BinLiChangchun18	356	1989
5824 https: YongSongShandong l18	61	2010
5924 https: Ning XiXiUniversity (15	843	1992
60 26 https: Masayoshi Tomizuka University 44	835	1970
6126 https: Joseph BLyonsUnited Stat21	77	2005
6226 https: Shin'IchiShiraishiToyota (Uni15	51	2013
6326 https: Matthew J BarthUniversity (13	231	1986
64 26 https: Chung-Wei Lin National Ta 12	70	2006
65 26 https: Tamer Başar University (12	829	1981
66 26 https: Ching-Yao Chan University (11	99	1987
67 26 https: Changliu Liu University (11	20	2014
68 26 https: Gene M Alarcon United Stat 9	48	2009
69 26 https: Guoyuan Wu University (9	102	2006
7027 https: EyalDassauHarvard Un21	221	2000
7127 https: Bruce ABuckinghar Stanford Ur17	296	1971
7227 https: Francis Jose DoyleHarvard Un16	557	1989
7327 https: ClaudioCobelliUniversity (14	904	1972
7427 https: DirkAbelRWTH Aach14	404	1987
7527 https: Steffen Leo: Leonhardt RWTH Aach13	588	1991
7627 https: Gregory PForlenzaUniversity (12	122	2010
77 27 https: David Matt Maahs Stanford Ur 9	398	2004
78 27 https: Berno Joha Misgeld RWTH Aach 9	105	2004
7930 https: VishalSharmaSoonchunh18	100	2011
80 30 https:Ing-Ray Chen Virginia Tec 18	211	1990
81 30 https: II-Sun You Soonchunh 17	334	2003
82 30 https: Jin-Hee Cho Virginia Tec 16	136	2005
83 30 https: Mo M Jamshidi The Univers 15	298	1982
8430 https: Phillip SYuUniversity (14	1688	1981
85 30 https:Liang Sun New Mexic 13	44	2009
86 30 https: Kim-Kwang Choo The Univers 11	910	2004
87 30 https:Florin Pop Polytechnin 11	291	2006
8830 https: PhilippeFournier-Vi Harbin Inst11	301	2005
89 31 https:Xi-Wang Dong Beihang Un 63	210	2012
9031 https: ZhangRenBeihang Un59	288	2001
91 31 https: Qingdong Li Beihang Un 54	218	2012
92 31 https: Zeng-Qiang Chen Nankai Univ 42	552	1994
93 31 https: Zhong-Xin Liu Nankai Univ 27	139	2006
94 31 https:Li-Hua Xie Nanyang Te 25	924	1989
	231	2004
95 31 https: Guoqiang Hu Nanyang Te 19		
9531 https: Guoqiang HuNanyang Te199631 \href{https: Hong-Yong YangLudong Uni19	100	2006
95 31 https: Guoqiang Hu Nanyang Te 19		2006 1990 2016

cation

	community	ions Resear	First name	Last name	esearch orga	l publicati firs	t publication
429	1	https:	Shiyan	Hu	University (148	2006
1056	1	https:	R B Ashith	Shyam	University	5	2016
1021	1	https:	Shahab	Kaynama	University (16	2009
970	1	https:	Peter C	Young	Lancaster U	203	1976
782	1	https:	Amanda	Prorok	University (45	2016
748	1	https:	Fumiya	lida	University (198	1998
717	1	https:	Mohamma	Tajiki	Queen Mar	22	2014
730	1	https:	Mohamma	Shojafar	University (132	2008
593	1	https:	Perla	Maiolino	University (43	2011
507	1	https:	Rayna	Dimitrova	University (59	2008
500	1	https:	Marija	Popovic	Imperial Cc	38	2016
680	1	https:	Luca	Scimeca	University (14	2017
1955	2	https:	Prathyush I	Menon	University	119	2004
1896	2	https:	Amy	Widdicom	University (4	2018
1866	2	https:	Graham	White	IBM (United	7	2019
1865		https		Ehsan	University (109	2009
1968	2	https	Qingbiao	Li	University (10	2019
2010		https	-	Mcdonald-	University (257	2005
1978		https:		Pearson	, University (92	1981
1862		https:		Tomsett	, IBM (United	19	2014
2043		https:		Gryte	University (15	2007
2072		https:		Minhas	University (2	2016
1973		https:			, Lancaster U	5	2016
1804		https:		Bloesch	Imperial Cc	63	2012
2024		https:		Cielniak	University (66	2003
1433		https:	-	Buchanan	, University (8	2019
1711		https:		Leonardis	, University (245	1989
1685		https:		Duckett	, University (130	1998
1619		https:			, University (57	2003
1766		https:			, IBM (United	61	2008
1577		https:		Pearson	Defence Sci	27	2008
1415		https		Kusumam	University (7	2015
783		https:	-	Prorok	University	45	2016
1238	2	https:	Simon Justi	Julier	University (173	1995
2164		https:			University (186	1997
2176	18	https:	Mario	Gianni	Plymouth l	21	2012
2272	18	https:	Henrik	Hesse	University (37	2009
2409		https		Hagras	University (276	1999
2146		https		-	Coventry U	22	2010
2397		https			Imperial Cc	84	2008
2439	18	https	Peer-Olaf	Siebers	University (128	2004
2383		https		Agrawal	University (35	2014
2141		https		-	University (313	1994
2314	18	https:	Zisos	Mitros	King's Colle	8	2016
2109	18	https	Sotiris	Papatheod	Imperial Cc	23	2016
501		https		Popovic	Imperial Cc	38	2016
1805		https	•	Bloesch	Imperial Cc	63	2012
2123		https		Khanesar	University (92	2007
2958	19	https	Martim	Brando	University (2	2016
2917		https		Yue	University (173	2001
2899		https:	-	Wang	, University (21	2009
			00	0	,		-